Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Advertise | Login 
 
Search Article 
  
Advanced search 
  Users Online: 510 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  

 
Table of Contents
CASE-BASED LITERATURE REVIEW
Year : 2012  |  Volume : 16  |  Issue : 4  |  Page : 627-630

Central precocious puberty due to hypothalamic hamartoma in a six-month-old infant girl


Department of Internal Medicine, Armed Forces Medical College, Pune, Maharashtra, India

Date of Web Publication5-Jul-2012

Correspondence Address:
Narendra Kotwal
Department of Internal Medicine, Armed Forces Medical College, Pune - 411 040, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2230-8210.98027

Rights and Permissions
   Abstract 

Precocious puberty defined as an onset of puberty below eight years in girls and nine years in boys, has an incidence of approximately 1 / 5,000 - 1 / 10,000 subjects with a female / male ratio of 20: 1. It is etiologically classified broadly as central and peripheral. We present to you a case of isosexual (central), precocious puberty in a 16-month-old girl, who was symptomatic since the age of six months, and was later, diagnosed to have hypothalamic hamartoma. It is one of the earliest case records ever in the medical literature of menarche, at an extremely early age (six-month-old child) secondary to a central cause.

Keywords: Gonadotropins, hypothalamic hamartoma, precocious puberty


How to cite this article:
Kotwal N, Yanamandra U, Menon AS, Nair V. Central precocious puberty due to hypothalamic hamartoma in a six-month-old infant girl. Indian J Endocr Metab 2012;16:627-30

How to cite this URL:
Kotwal N, Yanamandra U, Menon AS, Nair V. Central precocious puberty due to hypothalamic hamartoma in a six-month-old infant girl. Indian J Endocr Metab [serial online] 2012 [cited 2017 Mar 24];16:627-30. Available from: http://www.ijem.in/text.asp?2012/16/4/627/98027


   Introduction Top


Precocious puberty in infants is very rare. [1] Precocious puberty is defined as children attaining puberty more than 2.5 to 3 standard deviations (SD) earlier than the median age, or before the age of eight years in girls and nine years in boys; [2] prevalence being 10 times higher in girls. The most common mechanism for progressive precocious puberty is early activation of the pulsatile gonadotropin-releasing hormone (GnRH) secretion (central or gonadotropin-dependent precocious puberty), which results from hypothalamic tumours or lesions; but in most cases (approximately 90%) it remains unexplained. [3] The incidence of hypothalamic hamartomas (HHs) has increased since the introduction of MR imaging. The aetiology of this anomaly and the pathogenesis of its peculiar symptoms remain unclear, but recent electrophysiological, neuroimaging, and clinical studies have yielded important data that will be briefly reviewed in this article. No treatment is necessary in at least half of the cases of precocious puberty, as the gonadotropic axis is not activated and spontaneous regression of pubertal manifestations occur. [4] In cases with progressive precocious puberty, they may present with adverse psychosocial outcomes, early menarche, and short adult stature, because of early epiphyseal fusion. [5] We present a rare case of precocious puberty with clinical, laboratory, and radiological features supporting a central aetiology, presenting at an extremely early age (six months). We also use this case to illustrate an approach to a case of isosexual (central) precocious puberty in girls.


   Case Report Top


A sixteen-month-old girl was brought by her parents to the Paediatric Endocrinology Outpatient Department with a history of bleeding per vaginum since six months of age, with no previous history of genital trauma. She was the second child of the parents, with no positive history of consanguineous marriage. Initially she had irregular cycles, which evolved into monthly regular cycles of three to four days for the next eight months. The developmental (gross motor, fine motor, language, and social) milestones were achieved normally. Clinically her height and weight were at the eightieth percentile. Head circumference was 50 cm (ninety-fifth percentile). She had bilateral breast enlargement [Figure 1] and normal systemic examination. Fresh blood was seen on the genitals, with active vaginal bleeding, and there was edema and erythema of the vaginal introitus, with no local erosions. She had normal haematological and biochemical profiles, however, the hormonal analysis revealed pubertal response of gonadotropins with luteinizing hormone (LH) of 2.20 mI/ mL (N < 0.6 mIU / mL), follicle-stimulating hormone (FSH) of 5.58 mIU / mL (N < 0.6 mIU / mL), and estradiol (E2) of 10.2 pg / mL (N < 5 pg / mL), with normal thyroid functions. X-ray of the left wrist revealed bone age of 24 months [Figure 2]. Tumor markers such as carcinoembryonic antigen (CEA), CA 19.9, alpha-fetoprotein, and human chorionic gonadotropin (HCG) were negative. Uterine volume on pelvic ultrasonography was 2.2 ml, with no evidence of ovarian cyst / tumour. Magnetic resonance imaging (MRI) of the brain (plain [Figure 3]a and contrast [Figure 3]b) revealed a well-defined, sessile hypothalamic mass, isointense to the gray matter on T1-weighted, and hyperintense on T2-weighted sequences, suggestive of hypothalamic hamartoma measuring 1.44 × 1.38 cm. The patient is being managed as a case of isosexual (central) precocious puberty, secondary to hypothalamic hamartoma, with monthly GnRH analogs (Triptorelin). The patient is under regular monthly clinical follow-up for seizures and secondary sexual characters, annual hormonal assays, bone age assessment, and MRI brain, for changes in the hypothalamic hamartoma. The patient has shown good response on the two-year follow-up, with subsidence in size of the hypothalamic hamartoma, reversal of secondary sexual characters, and regression of monthly menstrual cycles.
Figure 1: Bilateral breast enlargement (Thelarche - Stage B3)

Click here to view
Figure 2: Plain radiograph wrist showing bone age of approximately 24 months

Click here to view
Figure 3: (a) Plain MRI Brain (T1W image) revealing sessile, well-defined hypothalamic mass is intense to gray matter (b) MRI brain, post contrast, revealing a hyper intense mass lesion suggestive of hypothalamic hamartoma, measuring 1.44 × 1.38 cm

Click here to view



   Discussion Top


Areas of uncertainty in evaluating cases of precocious puberty include, an appropriate age threshold for defining precocious puberty, approach to differentiate progressive from non-progressive forms, and causal mechanisms underlying idiopathic precocious puberty. To evaluate patients with suspected precocious puberty, internists should consider the following questions: Is pubertal development really occurring outside the normal temporal range? What is the etiology, and is there any risk of an intracranial lesion as the underlying mechanism? Is there any impairment in the child's normal physical and psychosocial development secondary to the aberrations in the progression of pubertal development?

Complete family history (age at onset of puberty in first-grade relatives), any signs and symptoms suggesting possible central nervous system (CNS) abnormality, such as, increase in head circumference, seizures (in particular gelastic), visual impairment or headache should be the first step in evaluating the case. Patients should be evaluated for high growth velocity, which may also precede the onset of pubertal manifestations and pubertal development, [6] classified as per Tanner staging. The extremely early age of onset (six months) of menarche and thelarche (Tanners stage B3), with no positive family history in this patient, directed the diagnosis initially toward peripheral precocious puberty (peripheral tumor or  McCune-Albright syndrome More Details) or the existence of an intracranial injury. The examination should comprise consideration for signs such as hyper pigmented skin lesions, suggestive of the McCune-Albright syndrome or neurofibromatosis, which were absent in our case.

Additional tests are recommended in patients with either Tanner stage ≥ 3 or stage 2, with increased growth velocity or symptoms and signs suggestive of CNS dysfunction. On fulfilling the first of these above-mentioned criteria, we subjected this child to additional testing (assessment of the bone age, hormonal analysis, and imaging). In precocious puberty, the bone age is generally greater than the chronological age, which can be assessed using a reference  Atlas More Details such as by Greulich and Pyle. Our child had a bone age eight months more than the chronological age. Early morning samples are preferred to determine the sex steroid levels. Serum E2 levels in girls have low sensitivity in the diagnosis of precocious puberty due to its high variability. Very high levels of E2 (≥ 100 pg / mL or 367 pmol / L) generally indicate an ovarian cyst or tumour. The gold standard for determining precocious puberty is the gonadotropin assay post stimulation by GnRH or a GnRH-agonist, prior to starting therapy. Peak LH levels of 5 - 8 mIU / L suggest progressive central precocious puberty, with 100% specificity for a cut-off figure of 6 mIU / L. [7] Unless levels of LH are clearly elevated, as in our case (more than four times the ninety-fifth percentile), it is important to be careful while checking the levels of gonadotropin in children less than two to three years (as the levels are generally higher in this age group). As the FSH levels have very little variation throughout pubertal development, its estimation is not very useful.

In girls, ovarian cysts / tumors and uterine changes (with 89% sensitivity and specificity for uterine volume ≤ 2.0 ml) [8] can be noticed on pelvic ultrasonography. This child had increased uterine volume, probably because of increased E2 (twice the normal), but was found to have no evidence of any ovarian pathology. To establish whether a hypothalamic lesion is present, an MRI of the brain should be performed in all cases of progressive central precocious puberty (CPP). [9] The prevalence of these hypothalamic lesions in CPP is lower in girls (8 to 33%) when compared to boys (40 to 90%). The prevalence is much lower (about 2%) if puberty starts after the age of six years. Our patient had a hypothalamic hamartoma measuring 1.44 cm × 1.38 cm, which is the most common causes of CPP at this age.

Hypothalamic hamartomas are non-neoplastic, heterotopic nodules, resembling the normal gray matter of the hypothalamus. [10] HHs occurs due to tissue displacement during the fifth or sixth week of gestation, when the ventral aspect of the neuraxis approaches the anterior tip of the end of the notochord. HH is associated with endocrinological, neurological symptoms, and symptoms due to the accompanying anomaly. [11] Endocrinological symptoms include precocious puberty, obesity, acromegaly, and hypopituitarism. Neurological symptoms include gelastic seizures, 'pressure to laugh', visual impairment, focal seizures with secondary generalization, developmental delay, cognitive impairment, and behavioural disturbance. HHs may sometimes be associated with symptoms of  Pallister-Hall syndrome More Details. HH has been classified variably by Arita et al. [12] into parahypothalamic / intrathalamic and by Bokyo et al. [13] into peduncular / sessile. Various reported modalities include resection surgery, disconnection surgery (disconnection from hypothalamus / corpus callosotomy), stereotactic radiation, radiofrequency thermocoagulation, and vagal nerve stimulation.

Internists evaluating a case of precocious puberty must take the decision on whether to provide treatment for girls, in particular, if onset of puberty is ≤ 8 years of age. The use of GnRH agonists continuously stimulates pituitary gonadotrophs, which further help in decreasing and desensitizing the release of LH, and to a lesser extent, FSH. [14] To determine the desired effect of the therapy, a suppressed response of LH to GnRH or its agonist is ascertained. The mean time to menarche is 16 months after termination of treatment. [15] Discontinuation of treatment at the age of 11 years aids in obtaining an optimal height and reappearance of pubertal manifestations. [16] The European Society for Paediatrics Endocrinology and its American counterpart, the Lawson Wilkins Paediatrics Endocrine Society, are now preparing the consensus statement in relation to the use of GnRH agonists in children. We managed our case with Inj Tryptorelin (GnRH agonist) monthly depot injections, with remittance of pubertal changes (clinical and hormonal). One should remember not to surgically remove a hypothalamic hamartoma to manage precocious puberty. Generally hypothalamic lesions, in association with precocious puberty, may lead to gonadotropin deficiency.


   Conclusion Top


Thorough history taking and careful examination is required to determine the possible causes of precocious puberty, however, it is often vague. Additional evaluation should include hormonal assays and bone age assessment (E2, LH, and TSH). If a randomly measured level of LH is in the pubertal range, an MRI brain should be obtained. A pelvic ultrasound scan is required to rule out an ovarian tumour or cyst, mainly if the E2 level is elevated. A GnRH or GnRH-agonist stimulation test is the gold standard for diagnosing CPP, and is recommended to assess the activation of the gonadotropic axis, for predicting the progression of puberty. In case of progressive CPP, treatment with a depot GnRH agonist is suggested and is generally continued for 11 years, even though the best duration of therapy is undecided.

 
   References Top

1.Rousso IH, Kourti M, Papandreou D, Tragiannidis A, Athanasiadou F. Central precocious puberty due to hypothalamic hamartoma in a 7-month-old infant girl. Eur J Pediatr 2008;167:583-5.  Back to cited text no. 1
[PUBMED]  [FULLTEXT]  
2.Mul D, Fredriks AM, Van Buuren S, Oostdijk W, Verloove-Vanhorick SP, Wit JM. Pubertal development in the Netherlands 1965-1997. Pediatr Res 2001;50:479-86.  Back to cited text no. 2
[PUBMED]    
3.Nathan BM, Palmert MR. Regulation and disorders of pubertal timing. Endocrinol Metab Clin North Am 2005;34:617-41.  Back to cited text no. 3
[PUBMED]  [FULLTEXT]  
4.Kaplowitz P. Clinical characteristics of 104 children referred for evaluation of precocious puberty. J Clin Endocrinol Metab 2004;89:3644-50.  Back to cited text no. 4
[PUBMED]  [FULLTEXT]  
5.Klein KO. Precocious puberty: Who has it? Who should be treated? J Clin Endocrinol Metab 1999;84:411-4.  Back to cited text no. 5
[PUBMED]  [FULLTEXT]  
6.Papadimitriou A, Beri D, Tsialla A, Fretzayas A, Psychou F, Nicolaidou P. Early growth acceleration in girls with idiopathic precocious puberty. J Pediatr 2006;149:43-6.  Back to cited text no. 6
[PUBMED]  [FULLTEXT]  
7.Neely EK, Wilson DM, Lee PA, Stene M, Hintz RL. Spontaneous serum gonadotropin concentrations in the evaluation of precocious puberty. J Pediatr 1995;127:47-52.  Back to cited text no. 7
[PUBMED]  [FULLTEXT]  
8.De Vries L, Horev G, Schwartz M, Phillip M. Ultrasonographic and clinical parameters for early differentiation between precocious puberty and premature thelarche. Eur J Endocrinol 2006;154:891-8.  Back to cited text no. 8
[PUBMED]  [FULLTEXT]  
9.Stanhope R. Gonadotrophin dependent precocious puberty and occult intra-cranial tumors: Which girls should have neuro-imaging? J Pediatr 2003;143:426-7.  Back to cited text no. 9
[PUBMED]  [FULLTEXT]  
10.Chen TC, Gonazelez-Gomez I, McComb JG. Uncommon glial tumors. In: Kaye AH, Laws E Jr, editors. Brain Tumors. 2 nd ed. London: Churchill Livingstone; 2001. p. 591-7.  Back to cited text no. 10
    
11.Mc Lendon RE, Tien RD. Hypothalalmic neuronal hamartomas. In: Binger DD, Mc Lendon RE, Bruner JM, editors. Russell and Rubinsteins's pathology of tumors of the Central Nervous system. 6 th ed., vol. 2. London: Arnold; 1988. p. 343-4.  Back to cited text no. 11
    
12.Arita K, Kurisu K, Kiura Y, Iida K, Otsubo H. Hypothalamic hamartoma. Neurol Med Chir (Tokyo) 2005;45:221-31.   Back to cited text no. 12
[PUBMED]  [FULLTEXT]  
13.Bokyo OB, Curnes JT, Oakes WJ, Burger PC. Hamartomas of the tuber cinereum: CT, MR, and pathologic findings. AJNR Am J Neuroradiol 1991;12:310-4.  Back to cited text no. 13
    
14.Lahlou N, Carel JC, Chaussain JL, Roger M. Pharmacokinetics and pharma-codynamics of GnRH agonists: Clinical implications in pediatrics. J Pediatr Endocrinol Metab 2000;13 Suppl 1:S723-37.  Back to cited text no. 14
[PUBMED]    
15.Heger S, Muller M, Ranke M, Schwarz HP, Waldhauser F, Partsch CJ, et al. Long-term GnRH agonist treatment for female central precocious puberty does not impair reproductive function. Mol Cell Endocrinol 2006;254-255:217-20.  Back to cited text no. 15
    
16.Carel JC, Roger M, Ispas S, Tondu F, Lahlou N, Blumberg J, et al. Final height after long-term treatment with triptorelin slow release for central precocious puberty: Importance of statural growth after interruption of treatment. J Clin Endocrinol Metab 1999;84:1973-8.  Back to cited text no. 16
[PUBMED]  [FULLTEXT]  


    Figures

  [Figure 1], [Figure 2], [Figure 3]


This article has been cited by
1 An 11-month-old girl with central precocious puberty caused by hypothalamic hamartoma
Da Young Yoon,Jae Hyun Kim
Annals of Pediatric Endocrinology & Metabolism. 2016; 21(4): 235
[Pubmed] | [DOI]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Case Report
   Discussion
   Conclusion
    References
    Article Figures

 Article Access Statistics
    Viewed18688    
    Printed64    
    Emailed0    
    PDF Downloaded463    
    Comments [Add]    
    Cited by others 1    

Recommend this journal